与仅对面部进行建模的早期方法相比,最近的3D面部重建方法重建了整个头部。尽管这些方法准确地重建了面部特征,但它们并未明确调节头部的上部。由于头发的闭塞程度不同,提取有关头部这一部分的信息具有挑战性。我们提出了一种新颖的方法,可以通过去除遮挡头发并重建皮肤,从而揭示有关头部形状的信息来建模上头。我们介绍了三个目标:1)骰子一致性损失,该骰子一致性损失在源的整体形状和渲染图像之间强制相似,2)刻度一致性损失,以确保即使头部的上部不是头部,也可以准确地复制头部形状可见,3)使用移动平均损耗功能训练的71个地标探测器,以检测头部的其他地标。这些目标用于以无监督的方式训练编码器,以从野外输入图像中回归火焰参数。我们无监督的3MM模型可在流行的基准上实现最新的结果,可用于推断动画或阿凡达创建中直接使用的头部形状,面部特征和纹理。
translated by 谷歌翻译
Object-goal navigation (Object-nav) entails searching, recognizing and navigating to a target object. Object-nav has been extensively studied by the Embodied-AI community, but most solutions are often restricted to considering static objects (e.g., television, fridge, etc.). We propose a modular framework for object-nav that is able to efficiently search indoor environments for not just static objects but also movable objects (e.g. fruits, glasses, phones, etc.) that frequently change their positions due to human intervention. Our contextual-bandit agent efficiently explores the environment by showing optimism in the face of uncertainty and learns a model of the likelihood of spotting different objects from each navigable location. The likelihoods are used as rewards in a weighted minimum latency solver to deduce a trajectory for the robot. We evaluate our algorithms in two simulated environments and a real-world setting, to demonstrate high sample efficiency and reliability.
translated by 谷歌翻译